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Outline 
• Case based density approach 
 
• Ordinary differential equations 
 

• Notion of transport in case trajectories- 
advection equation  
 

• Modelling cases at the individual level – the 
vector space approach 
 

• Modelling cases at the aggregate level – the 
density approach 
 

• Uniqueness of the approach   
 
• Applications 

 

 

 



Case based density approach 

 

 
 

• Every case has a certain number of measurements. 
 

• Cases (and hence the measurements) evolve as a 
function of time. 
 

• The movement of each case is its case trajectory. 
 

• The movement of a distribution (or density) of cases 
is the density trajectory. 
 

• Our approach aims to capture the majority and 
minority trends of case trajectories, and also models 
the motion of densities. 
 
 
 



Ordinary Differential equations 

 

 
 

 
 

• Traditionally used to model mechanical, electrical, 
chemical, biological and ecological processes.  

 
• Examples are population growth, predator-prey 

models, passive electronic circuits, mechanical stresses 
and strains, first and second order chemical reactions, 
rate of forgetting etc. 
 

• First order differential equation – Given velocity find 
position. Need initial conditions. 
 

• Solution is a trajectory which is a function of time 
(just one independent variable) 

 
 

 
 
 
 
 



ODEs 

 

 
 

 
 

 
• For our purposes, ODEs can be used to model case 

trajectories.  
 

• Need velocity information of cases in order to compute 
case trajectories by solving the ODE. 
 

• Velocity can be a function of the current case profile, 
and current time. 
 

• Solving an ODE amounts to computing the case 
trajectory given the velocity information 
 

 
 
 
 
 



Advection equation – transport of 
density of cases 

 

 
 
 
• Transforms the motion of individual cases to the 

motion of a density of cases. 
 
• Requires the initial distribution of case profiles, and 

the velocity vector field of cases (same as the one used 
in the ODE), and can compute the motion of the 
initial density assuming that the total number of cases 
is a constant (called mass conservation property). 
 

• Used in modeling of transport phenomena such as 
fluid dynamics (oil spill), traffic on streets. 

 
 
 
 
 



Advection equation – transport of 
density of cases 

 

 
 
 
• This is a partial differential equation (PDE) since the 

density is a function of the case profile and time (more 
than one independent variable for the state). 

 
• Prior work – Using the advection PDE to study the 

aggregate motion of states instead of individual 
trajectories to coin a new notion of stability called 
almost everywhere uniform stability.  
 

• Motion of individual states are described by nonlinear 
ODEs, however the motion of aggregates is described by 
a linear PDE!! 

 
 
 



Advection equation – transport of 
density of cases 

 

• Notion of transport is applicable to a variety of topics 
in sociology such as residential mobility and health 
trajectories. 
 

• Residential mobility – variables are actual 
geographical ones. Trajectories are in physical 
coordinate space. 
 

• Health trajectories- Variables are biological, 
sociological markers – state space is more abstract 

 
 





Modelling cases at the individual 
level – the vector space approach 

 

• Each case is a vector in a k dimensional vector space 
 

• The motion of a case across time is equivalent to the 
motion of it equivalent vector across time 
 

• The collection of cases (or k-dimensional vectors) is 
a vector space 
 

• Hence, a case trajectory is represented as a k-
dimensional vector trajectory in a vector space (also 
sometimes called the state space) 
 

• The motion of individual cases is modeled by an 
ODE 
 
 
 



 



Modelling cases at the aggregate 
level- the density approach 

 

• An aggregate of cases forms a distribution (or a 
density) in state space 
 

• As the cases evolve, the density of cases also evolves 
 

• The initial density can be chosen to have more cases 
with a certain profile and vice versa. Any initial 
distribution can be chosen. 
 

• The motion of densities with mass conservation is 
modeled by the advection equation which is a PDE 
 
 
 
 



 



Modelling aggregate dynamics 

 

• At the microscopic level, we have nonlinear and 
complex dynamics but at the macroscopic level, we 
have lower order and slow dynamics 

  
• The macroscopic aggregate dynamics are akin to 

Haken’s order parameters.  
 

• Our approach aims at extracting slower macroscopic 
dynamics and classifying them as major and minor 
trends. 
 

• We expect the trends to be a fundamental defining 
characteristic of complexity in the system. 
 
 
 
 
 
 



Uniqueness of our approach 

 

• Continuous time modeling 
  
• Deterministic  modeling   

 
• Differential equations (both ODE and PDE) 

 
• Gradation of state space based on velocity of motion 

 
• Non-equilibrium clustering using the Lyapunov 

density plot 
 
 
 
 
 
 



Strengths 

 

• Prediction of longitudinal evolution of cases with 
multiple variables across time 

  
• Studying complexity in dynamical motion of cases 

in the form of saddles, sources, sinks, or periodic 
orbits 
 

• Gradation of the state space into regions where cases 
move faster (or slower) from the velocity contour plot 
 

• Non-equilibrium clustering of trajectories from the 
Lyapunov density plot (higher values mean more 
trajectories have squeezed through) 
 
 
 
 
 
 



Strengths 

 

• Prediction of majority trends in trajectories for novel 
choices of initial profiles or densities 
 

• Multiple models to describe the same phenomena 
allowing for a choice of better ones 
 

• Ease of incorporation of new data into the modeling 
process to fit the database as it grows 
 
 
 
 
 



  

Simplifying  

Assumptions 

Here, we are drawing on Haken’s synergetics and the idea that self-

organizing macroscopic trajectories are less dynamic, generally speaking, 

than microscopic trajectories, which are high dynamic, out of which the 

former emerge.  



  

Simplifying  

Assumptions 



  



  

Simplifying  

Assumptions 



  



  



  

Simplifying  

Assumptions 



 
Residential mobility 

 
Global Health of Nations paper 

 
Motion of density 

 
 

http://faculty.kent.edu/rrajaram/ComplexityPaper2012.pdf
http://faculty.kent.edu/rrajaram/ComplexityPaper2014.pdf
http://ksutube.kent.edu/playback.php?playthis=pi4g0d7c4
http://ksutube.kent.edu/playback.php?playthis=k117nbk9m


Questions?? 


